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parameter and the ultrametric topology: a simple mean field 
model 
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Centre de Physique Thkorique, CNRS, Luminy, Case 90711, F-13288 Marseille Cedex 9, 
France 

Received 24 January 1985, in final form 1 August 1985 

Abstract. We discuss and solve by standard methods a simple model with long-range 
random interaction. In this model we can rigorously define and explicitly work out many 
peculiar features already found in the Sherrington-Kirkpatrick model only by means of 
replica symmetry breaking and/or  via numerical simulations. 

1. Introduction 

Recent results in the replica approach to the Sherrington-Kirkpatrick ( SK) model 
suggest the existence and physical relevance of model systems that have (Mezard er 
a1 1984) 

( i )  an infinite number of coexisting pure equilibrium states; 
(ii) a hierarchical structure among these states typical of ultrametric spaces (see 

point (c) of § 2)  and 
(iii) an order parameter which is non-self-averaging, i.e. it shows a non-trivial 

dependence from the actual realisation of the couplings. Meanwhile other quantities 
(e.g. the free energy) always take the same value in spite of the randomness of the 
interaction. 

In this paper we discuss a simple random model, where, for almost every sample, 
we can explicitly define and evaluate 

( i )  the free energy; 
( i i )  the set of pure states; 
(iii) the overlapping between any two of these states and 
(iv) the probability distribution of such an overlapping. 
Meanwhile the free energy is independent from the sample and the probability 

distribution (iv) is shown to be a non-self-averaging quantity. 
This allows us to illustrate a possible way to deal rigorously with infinite sets of 

pure states and to discuss the problems involved in the description of a non-self- 
averaging effect. 
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The system is made up with 2K blocks of M spins each. The Hamiltonian is the 
sum of 2K self-interaction terms plus a suitable long-range potential. We study the 
model in the limit where M and K both go to infinity. 

The self-interaction is such that for M + CO each isolated block has four independent 
equilibrium states. Before the long-range terms are switched on, the equilibrium states 
of the full system are qZK and the global properties of this set of states are, in some 
sense, trivial. In particular if we compare the local magnetisation in two of these states 
the value of the overlapping 4, i.e. 

is typically zero. 
The form of the interaction among the blocks has been chosen in such a way that 

the new equilibrium states are contained in the set of the above mentioned q Z K  states, 
but belong to a suitable subset where the overlapping is non-trivial and the ultrametric 
structure together with properties (iii) follow. 

We also consider the action of an external magnetic field (see 0 5 ) :  we show that, 
when h is sufficiently small, the general picture stays the same. 

In our model randomness is present at two different levels. There are local random 
couplings a la Luttinger (1976) responsible for the existence of the above mentioned 
four pure equilibrium states in each block and a second family of random couplings, 
associated with the scale length of the blocks, and that gives rise to the fluctuations 
of the order parameter. From the sketchy description given above the reader easily 
realises that the model is strictly ‘ad hoc’. The mechanisms that we assume only aim 
to reproduce a given set of results and possibly do not have much to do with those 
present in physical systems or even in the SK model. In spite of this, we think it is of 
some interest to present an example where it is possible to properly define and explicitly 
derive quantities and relations suggested by replica symmetry breaking arguments. 

2. Description of the model and main results 

Consider the one-dimensional lattice 2. We suppose we are given three random fields: 
( S a ) a s ~ ,  (v,),€z and (12i)lsZ, where ea, 7, and c2, are independent identically dis- 
tributed random variables taking the value +1 and - 1  with equal probabilities. We 
call p I  the probability corresponding to (&, v , ) , ~ ~  and p2 the one associated to 
(121)lcz. Our model will describe an Ising-like system: to each lattice site CY E Z is 
associated a spin U, taking values * 1  and the interaction will depend on the random 
field ( ( a )  (77,) and ( 5 2 1 ) .  

Given an integer M, we call 

Administrator
range
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and define in a volume i2 = [l ,  N ]  with N = 2KM the following Hamiltonian 

K 2K 

1 = 1  J = 2 l + l  

with J,,, J1 and E positive. 
Notice that the terms in the first sum on the right-hand side of (2.2) are very similar 

to those considered by Luttinger (1976) in his non-frustrated mean field model of a 
spin glass and our Hamiltonian can be regarded as describing a set of 2K such systems 
coupled by a non-translationally invariant potential U la Kac (Thompson 1972) with 
zero boundary conditions. We shall study the equilibrium statistical mechanics of this 
system for a given sample of the {ta} {va} and {Izi}. We are interested in the limit M 
and K going to infinity at the same time, but in order to be more clear we shall take 
the limit M + CO first. 

We remark that in our model, whose ancestor is the Curie-Weiss model (see, for 
instance, Thompson 1972) the microscopical variable appears in the Hamiltonian only 
via some linear combination suitably normalised, i.e. Si, t ,  (see (2.1)). Therefore only 
these variables, taking values on the internal [ - 1 ,  i l l ,  are relevant and our equilibrium 
states will be probability measures on ([-1, +1] x [-1, 13)'. We will show that CL' 
almost everywhere. 

(a) For any realisation of the 12, 
1 

F ( p )  = lim -log exp( -pH\ an)) 
n-cc In1 {,7d 

(2.3) 

(2.4) 

where %'(x) = +( 1 + x) log( 1 + x )  +i( 1 - x) log( 1 - x)  is the leading term in In1 of 
log(tcl!t',lnl) and m* is the positive solution of the equation 

m* = tanh pJom*. 

(b) For all /3 s pc the equilibrium state is unique and the associated probability 
distribution has support on the configuration S, = 0, t ,  = 0, V i  E Z. 

For all /3 > pc the system exhibits an infinity of pure equilibrium states, each being 
characterised by a suitable sequence of 0, *m* for the values of the S, and the t i  (see 
figure 1 ) .  To be more precise, in the finite K case, our Gibbs distribution converges 
in the limit M + CO to a convex combination of 2K 22K Dirac measures. We shall call 
N K  the set ofthe allowed sequences (see (3.14)) where these measures are concentrated. 

Figure 1. Equilibrium states associated to the instanton ( J ,  +m*) where f = m*, s = 0 for 
, t = 0, s = Am* for the blocks 0, f = *m*, s = fm* for the blocks El. 
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Given an element A in N K  we call Sf, t : ,  i = 1,. . . , 2 K  the values of the S ,  and t ,  in 
the sequence A. 

(c) To analyse the structure of this set of states, in the limit of large K ,  consider, 
following Parisi (1983), two identical copies of our system. The function 

/ .. 2 M K  

is the Laplace transform of the probability distribution of overlapping 
((1/2MK) Zzzf u,ub) between the spins of the two copies. Performing the limit 
M + CO we obtain (see the appendix) 

Given any two states A and B it is natural to introduce the overlapping 

and the distance 

= 2( m*2 - q A B )  

In our model, the probability P:(q )  that a pair of states has an overlapping greater 
than q can be explicitly evaluated in term of the weights appearing in equation (2.6): 

where 

In 0 3 we show that in the limit K +CO the set of the pure equilibrium states exhibits, 
almost surely, the hierarchical structure of an ultrametric space (Bourbaki 1966), i.e. 
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if we take any three states and we compute the three distances, at least two of which 
are equal. 

(d)  P F ( q )  is the quantity proposed by Parisi (1983) as order parameter for spin 
glasses. Notice that, due to dependence on the sample { S , , }  (see ( 2 . 8 ) ) ,  P K ( q )  is a 
probability distribution-valued random variable. 

3. Calculation of the free energy and determination of the pure equilibrium states 

We will show that the free energy exists p,  almost everywhere and does not depend 
on the actual values of the tu, vu and iZi. 

In,\ = M and the partition function ZN is given by 
Let us start with J ,  = 0. In this case we have 2K independent blocks 0, . . . 

where 

It is convenient to express the Hamiltonian 

H ~ ( u , , )  = - M J , ( ~ S f + ~ t f )  - 6iti 

in terms of the variables p, and A, given by 

PU = 2 % + ~ a ) ~ a  
A,=i(va -5,)gm. 

From ( 3 . 1 ) ,  ( 3 . 2 )  and (3 .3 )  we have 

where 

Cl:-{ .  E [ i M + l ,  ( i +  l ) M ] / t a  = va} 

{a E [ i M  + 1 ,  ( i +  l)M]/&, = -.I*}. 

Calling 

( 3 . 2 )  

(3.3) 
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where M :  = IfltI, MT = Iflyl, we get 

M Cassandro, E Olivieri and P Picco 

and 

The Hamiltonian Ho( u ~ , )  describes two independent 
so that 

- S,r, - S, l , .  

Curie- Weiss systems in fl:fl 

Since, by the strong law of large numbers, M ; / n  + i, M T / n  + i, almost surely when 
M goes to infinity, the usual Laplace method leads to 

(3.7) 

for 8 ( x )  cf equation (2.5). 
It is an  easy matter to check that for p G Pc= l/Jo 

(which is equivalent to SI = 1 ,  = 0) is the only maximum. Meanwhile for p > pc the 
absolute maxima are four and expressing them in terms of the old variables we get 

SI = m* ti = o  

S,  = -m* ti = o  
si = 0 t ,  = m* 

where *m* are the non-zero solution of the equation 

m* = tanh PJom*. 

The free energy Fl (P)  of the ith block is given by 

-pFt(p) = &,m*2 - zP( m*) 

(3.9) 

(3.10) 

(3.11) 
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In the case J , > O  a new interaction among the blocks is switched on and the free 
energy F (  p )  becomes 

- p F ( p )  = max 9 ( s ,  t, p )  (3.12) 
S. f 

where 

with 

(3.13) 

(3.14) 

If we remark that AZO it is easy to convince ourselves that, for any given K, all the 
minima of the total free energy in the limit M + cc are given by the solutions of the 
equation A = 0 that satisfy the constraints given by equation (3.8) for p s pc or by 
equation (3.9) for p > pc.  It turns out that for p 3 pc,  the absolute minima have the 
following form for J = 1,2 ,  . . . , K :  

if l < i c J  I SZi = o  tZi  = m* 

= *m* or 0 t2 i+l  = * m *  or 0 

S, = *m,  t ,  = 0 if 2 J +  1 i s 2 K  

or the analogous ones with t 2 ,  = -m* if 1 6  i S J (see figure 1 ) .  
Meanwhile, given a choice of J, the values of Si and ti are fixed for all blocks 

2i, 1 s i Sj .  Their values can be chosen in 4' ways for the odd blocks 2i - 1 (is J) 
and in 22K-2' ways for the remaining blocks. 

Therefore Vp > Pc the number of equilibrium states is 2K 22K but the associated 
free energy is always 

- p ~ ( p )  =$Jom*2- %'(m*) .  (3.15) 

If we consider fhe Hessian of 9 ( s ,  Z, p )  evaluated at a point satisfying (3.14) we 
immediately see that the contribution coming from the A terms are identically zero, 
so that the behaviour around the minima is quadratic as in the case of the uncoupled 
systems, so that for any finite K in the limit M going to infinity the equilibrium 
measures are of the form 

2 K  n s ( ti - t A( J ) ) 6 ( si - SA( J ) ) 
i = l  

(3.16) 

where S , ( J )  and t i ( J )  have to be chosen following a pattern consistent with (3.14). 
All the previous equilibrium states can be collected in classes, that we will call 

instantons, with the following rule: we give an integer J E [ 1,  K ]  (the length of the 
instanton) and the sign of the ti on the even blocks belonging to [ l ,  251 and consider 
all the equilibrium states with these properties. Then an instanton is characterised by 
an integer J and a variabie with values in { - m * ,  +m*}  (see figure 1). 
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4. The overlapping between two equilibrium states: the Parisi order parameter 

For any given pair of pure states A and B, calling J4 and JB the length of the associated 
instantons, from the result of the previous section (2.6) and (2.7), we obtain 

From equation ( 2 . 6 )  we get also that the three sums on the right-hand side of 
equation (4.1) are sums of independent random variables with mean zero. By the law 
of large number we get for JA = ak and JB = bk 

Furthermore if we remark that all the states associated with the instanton J have the 
same weight: 

Given q, the probability of having an overlap bigger than q is 

for 

for 

- 4 < q < o  

(4.3) 

and zero otherwise. 

averaging quantity for any fixed I(. 
Looking at formula (4.31, it is easy to convince oneself that P:(q) is a non-self- 

The question that naturally arises is if such a feature is preserved in the K +CO limit. 



Injinile number of pure equilibrium statcs 98 1 

Given J A  = [ a K ]  and J B  = [ P K ] ,  it is easy to check that 

i.e. the covariance of the Brownian motion. This suggests that, in some way, 

f f ; ( J ) - ,  1' exp(@m*W(y)) dy 
J =[ 2iq 1 K ]+ 1 2141 

where W is a Brownian motion. 
To make this statement precise, it is necessary to define the way the limit is taken 

and prove the uniform convergence with respect to q. To be consistent with our 
previous results that were all almost sure with respect to pi  and p 2 ,  we will require 
p2 almost sure convergence. The proof, based on Skorohod's embedding scheme 
(Breiman 1968), is non-trivial but, since it is rather technical, we will skip it. 

The result is the following: f?r any K we can define, on a new probability space, 
a family of random variables ( c 2 , ) : ,  which have the same distribution as ( l l z ) E I  
together with a Brownian notion W in such a way that if K = K ( I )  is a subsequence 
increasing rapidly enough, (3.6) is true puz almost surely, uniformly with respect to q. 
Therefore P ' K ' ( J )  converges almost surely to the probability distribution-valued ran- 
dom variable 

P, ( 4 )  = [fHt(q, ")I2+ [ f ; ( q ,  ")I2 
P W ( 9 )  = 1 -2[fHt(lql, ")IEf;(/ql, Pm*)I  

i f o < q < f  

if - + < q < o  

and zero otherwise. This is a rigorous way to describe a non-self-averaging effect and  
we think it is of some interest to be able to illustrate, in a simple model, problems and  
strategies that should be relevant for any random system. 

5. Comments and remarks 

Remark 1. It is natural to ask how much of the previous results are still valid if we 
introduce an  external, possibly small, magnetic field h. Meanwhile the interaction 
among blocks stays the same and the self-interaction inside each block becomes 

H ,  = -MJo -+- - S , t ,  - Mhm,. (T 3 
Following the procedure of § 3, each block splits into two ferromagnetic sub-blocks 
with a random external field and the equation for the extrema of the free energy 
associated with each sub-block are of the form 

a,+ a2=~{tanh[2p(a ,+a2)+ph]+tanh[2p(a ,+a , )  - p h ] }  

a, = tanh[2/3( a, + a 2 )  + p h ]  
where a , = i ( r + m ) ,  a , = f ( r - m ) .  

These equations have already been derived and discussed in similar (Luttinger 
1976) or slightly different contexts (Gorter and  Peski-Tinbergen 1956, Kincaid and 
Cohen 1975) and a detailed study, both graphical and numerical, is performed in 
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Gorter and Peski-Tinbergen (1956) and results therein are summarised by Kincaid and 
Cohen (1975). 

From this analysis it emerges that while for p < pc and arbitrary h the only solution 
is a, = a, = 0, for /3 > pc the phase diagram in the ( p ,  h )  plane becomes quite compli- 
cated with two and even three coexisting phases in each sub-block. However the limit 
h+O is still simple and it is easy to show that V p > p ,  and suitably small h, the 
equilibrium states are very similar to those of the h = 0 case. 

Remark 2. This class of mean field random models involving only global variables 
suitably normalised (e.g. S = 2 &pa./ M )  can be studied following a very general 
procedure based on large deviation theory (van Hemmen 1982). We think it is worth 
pointing out that the procedure we use in 9 3 is less general but has two advantages. 

(i)  It is more transparent from a physical point of view (for every sample of the 
&a and rle the blocks split into two smaller blocks with ferromagnetic interactions only). 

(i i)  It allows us, via the Stirling formula, to get explicitly the non-leading term in 
M. Those terms, not relevant for the evaluation of the free energy and the determination 
of the extrema, are necessary to perform the estimate made in the appendix. 

Remark 3. Each equilibrium state of our system is associated with an ‘instanton’ and 
all instantons start at i = 0 (cf equation (3.14)). To avoid this unpleasant feature, that 
singles out a particular site, our system can be thought of as a circle and the origin of 
the instantons as another random variable. 

Also the feature that only even blocks have to be ‘aligned’ can be avoided. If we 
consider two sequences {Cn)neN and {Dn}ncN of sets of blocks: 

IC,[ = ID,( = n 

c, c c,. D, c D,, V n  < n’ 

it is easy to construct an interaction similar to that in (2.2) where the role played by 
odd and even blocks with index less than 2n is now played by the blocks belonging 
to C, and D,. 

These are all ‘cosmetic’ improvements and they cannot hide the real drawback of 
this model. The randomness associated with the &, and 7, is too weak to play the 
role of the Jii of the SK model and we have to introduce an interaction on a different 
scale length to induce the hierarchical structure of the states. But as we have pointed 
out in the introduction our aim is not that of proposing a new candidate for the 
Hamiltonian of spin glass systems but simply to exhibit a statistical mechanical model 
where it is possible to test, by standard methods, ideas and procedures still ill defined 
in more complex models. 
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111:  

where Z '" runs over all configurations {U, U ' }  such that 
u,u' 

Let us define if O <  S <$ 
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and 
2 K  

Z ( M ,  K )  = U E,. 
1 = 1  

We want to study 

Lemma 

Roof: Using 

and 

Using the multinomial theorem and resumming over the indices K and K '  we get 

( M : ) !  
", n ,  ! n,! n 3 !  n4! -[ Y n ,  + n2  - n3 - n4] h( r l ,  r:) =E* 

( M y  
('414) 

where E* runs over all families ( n ,  , n,, n 3 ,  n4) of positive integers with the constraints 

n,+n,+n,+n,= MY 

n I - n, + n , -- n4 = M ,' r, 

n I - n, - n3 -- n4 = M :  r: . 
(A151 

If we set n, = n , M :  it is not difficult to check by the Stirling formula that, under the 
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previous constraints, ( M ; ) ! / n ,  ! n,!  n,! n,! is a maximum if 

a = i 7 i, r, r,r + i r :  

CY? = 4 - , r, + i r r r :  - i r :  

a 3 = i + i r ,  - i r l r : - i r :  

a ,  = ;j - ar, - Sr,r: + r, 

and that this maximum is equal to 

exp ( - M T (  -log 4+ 8( r, ) + a( r : ) )  

I 1  

1 1  

x exp(- i  log A I ;  - 4  Iog(1- r f )  -; Iog(1- r : 2 ) + o (  hil l )  

from which we get the result. 
I f  we consider 

(A181 

the term exp(-X?f, ( M :  log 4-:  log M ;  + M ;  log 4 - $  log M y )  which appears in 
IIf,", (1 1 ) ( 1  1)  in the numerator factorises and is cancelled by the same term in the 
denominator. 

On the other hand the sum X r , s l l  can be replaced by an integral over [-1, +112, 
and the main contribution of this integral comes from the neighbourhood, say balls 
of radius p ,  of the minimum defined by equation (3.14). 

I f  p 3 M  goes to zero when M goes to infinity, it can be checked, by using 
pl(lim, Z ( M ,  K ) )  = 1 and the usual Laplace method that the contribution of a neigh- 
bourhood of (sA ,  tA,  dB, f B )  is pI almost everywhere 

x [det H(sA, t4, s l B ,  t ' B ) ] - 1 ' 2 M - K  

where H (  T*, t * ,  S I * ,  t ' * )  is the Hessian of the function F. It can also be checked that 
the total contribution which comes from the integral outside these neighbourhoods 
does not exceed 2 , l n p .  Therefore if M ,  goes to infinity this contribution goes to zero. 
I t  is not difficult to see that det H(sA,  tA ,  s ' ~ ,  f r B )  and I;:, log[l - ( s A -  t")'][l+ 
( s B +  tB)'] has the same value over all the minima defined by equation (3.14) so that 
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it will factor out; therefore when M goes to infinity we get 
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